Motivation

- We propose an aging Resilient RO PUF design for FPGA exploiting the SRAM cells and multiple paths available in FPGA LUTs.
- Advantages of presented PUF:
 - Average improvement of 37% in aging degradation compared to conventional RO PUF.
 - Average improvement of 37.4% on reliability compared to conventional RO PUF.

Theory and Background

- Aging in transistors and their types
 - Results from trapped charges and broken bonds at gate dielectric interfaces which increases \(V_{th} \) in scaled monodevices.
 - Bias Temperature Instability (BTI)
 - Results in a positive shift in the absolute value of \(V_{th} \).
 - BTI Recovery occurs when: \(|V_{gs}| = 0, |V_{ds}| = V_{dd} \)

- Hot Carrier Injection (HCI)
 - During switching, the accelerated carriers drift towards drain under the influence of the lateral electric field generating secondary carriers through impact ionization.
 - HCI occurs when \(|V_{gs}| = V_{dd}, |V_{ds}| = V_{dd} \)

- Increases \(V_{th} \) and decreases switching speed. It is negligible for higher technology nodes but increases for technology nodes <40nm.

- LUT structure and LUT based RO in FPGA
 - Popular LUT structure in FPGA include Pass transistor structure and T-gate structure.

Simulation Results

- A set of 50 RO PUF instances are simulated in Hspice using Monte Carlo and MOSRA aging degradation tool.
 - PTM 90 nm model card is used as the technology node.
 - In Hspice, the ROs are modeled using LUT based FPGA architecture as shown before.

- Both LUT structures are simulated with every RO PUF consisting of 128 ROs generating a 64-bit response.
 - The comparison time is 10µs and the ROs are aged using MOSRA tool for an accelerated aging for 1 year.

Experimental Setup and Measurement

- Silicon measurement results are calculated with Elbert Spartan 3A FPGA boards (90nm tech node).
 - A set of five Elbert V2 boards are programmed with conventional RO PUF design with 110 ROs laid out.
 - Initial frequency data is taken at normal supply voltage (1.25V) and room temperature 27°C.
 - The boards are aged at 1.45V supply voltage and 100°C temperature using Tempronix Thermostream.
 - Post aging frequency data is collected.

Conclusion

- The steps mentioned before are repeated for five FPGAs with proposed RO PUF and results are
 - Silicon results show an average improvement of 37% in aging degradation of proposed RO PUF.

- The Reliability of the proposed PUF is improved by 37.4%.

- Sleep path and oscillation indicates similar aging which hints the LUT architecture is PT based.

Acknowledgement

This work was supported in part by the National Science Foundation under Grant No. 1559772 and by the AFOSR MURI grant under award number FA9550-14-1-0351.